Jessica Lueders-Dumont

MarineGEO and STRI Postdoctoral Fellow

jess and otolithsMy research question as a Smithsonian MarineGEO fellow at STRI is, What did the coastal marine food webs of Caribbean Panama, Chesapeake Bay, and the rocky shorelines of British Columbia “look like” in the past? My approach is to ask the fish, through measuring the chemical fingerprints within historical, sub fossil, and fossil otoliths (fish ear stones) from sediments and archives. Using otoliths as time capsules of oceans past, this research will reveal new insights on pre disturbance ecological baseline across diverse systems, prior to fishing, land use changes, and rapid climate change.

I am particularly interested in the relationship between food web structure, apex predator trophic level, and nutrient regimes on long time scales. I use nitrogen isotopes, usually in the carbonate-bound organic matrix of fish otoliths (ear stones), to track biogeochemical and food web processes.

In addition to the O’Dea Lab at STRI, I am working in collaboration with the Rick Lab at the Smithsonian Natural History Museum, the Hessing-Lewis Lab and McKechnie Lab at the Hakai Institute, and the Sigman Lab at Princeton University.

Rick Lab at the Smithsonian Natural History Museum, the Hessing-Lewis Lab and McKechnie Lab at the Hakai Institute, and the Sigman Lab at Princeton University.

cod_018L_0.63x_reflected.jpg

Look forward to the past

ICRS-2020-flyer

Submit your abstracts to our special session on the historical ecology of coral reefs at the International Coral Reef Symposium to be held in Bremen July 2020 (www.icrs2020.de). Deadline for abstract submission is 1st September 2019.

What role does historical data play in the future of coral reefs?

To tackle the future of coral reefs it is essential to understand their ecological and environmental histories. Consequently, the use of historical data in coral reef ecology is expanding. Analytical approaches are maturing, compelling sources of data are being uncovered, and historians, paleontologists and archeologists are collaborating more fluidly with marine biologists and conservationists. This multidisciplinary session will explore how paleoecological, historical, and archeological data can reveal mechanisms of natural and human-driven change in coral reef communities to better understand how they function, both today and in the future. Submissions are welcomed on, but not limited to: incorporating spatial and temporal variation into baselines; resolving drivers of change in ecological structure; identifying legacy effects, non-analogue communities and refugia; developing emerging methods (e.g ancient DNA); and improving dialogue with reef managers, conservationists, and policymakers.

Chairs

Aaron O’Dea, Smithsonian Tropical Research Institute, aaronodea@gmail.com
John Pandolfi, University of Queensland, j.pandolfi@uq.edu.au
Loren McClenachan, Colby College, lemcclen@colby.edu
Erin Dillon, UC Santa Barbara, erinmdillon@ucsb.edu

Max Titcomb

STRI Intern

I am an undergraduate at UC Berkeley studying Molecular Environmental Biology with a focus on ecology. I have worked in the Finnegan lab. My project at STRI will be to gather topographic data from around the Panama region and utilize GIS approaches to map sea level changes that have occurred throughout the last 20,000 years. This project will provide a valuable insight into understanding the marine ecosystem changes that have occurred in Panama.

My other interests are in marine paleobiology, ichthyology, and scuba diving. I plan to pursue graduate school for Marine Biology to become a better researcher and steward of our oceans.

Processed with VSCO with g1 preset

Jihane Benbahtane

STRI Intern

UNADJUSTEDNONRAW_thumb_57bc (1)

I’m currently enrolled as a graduate student at McGill University in a program that focuses on neotropical ecosystems. My master’s project is centred around herbivory interactions and the effect of overfishing on Caribbean coral reefs. I study how fishing can change the community structure of parrotfish and their life history traits, as well as how these changes in fish community affect reef health in Barbados.

In the O’Dea lab, I will be looking at the historical relative abundance of sea urchins from sediment samples collected in the Pacific coast of Panama. I will be collaborating with Jon Cybulski, a STRI fellow in the lab, to investigate relationships between the community structure of these herbivores and accretion rates of coral reefs.

Pursuing underwater pipe dreams: collecting sediment cores from Moorea’s coral reefs

Originally published on the ReefBites Blog

Written by Erin Dillon

What do you get when you combine a three-meter-long piece of aluminum irrigation pipe, a fence post driver, an old pipe clamp, and a motley crew of scientific divers? Quite a lot, it turns out.

We were twelve meters deep on a fringing reef along the northern coast of Moorea, a French Polynesian island in the South Pacific, braving bad weather and blinding plumes of swirling silt to unravel the history of these reefs. We hammered relentlessly, trying to hold the pipe perfectly upright as it crept, centimeter by centimeter, deeper into the sediment (Fig. 1). Excitement coursed through usas the pipe slid further and further down into the matrix of sediment and dead branching coral. We held our breaths (figuratively speaking; don’t worry, diving safety officers), hoping that the core barrel would not hit a large coral head and get stuck. We hammered and hammered, the air left in our tanks being the only limiting factor.

Figure1. Pounding the core barrel into the substrate, surrounded by clouds of silt.Photo credit: Aaron O’Dea

Pounding the core barrel into the sand was challenging, but pulling it out was even harder. We curled ourselves awkwardly around the pipe and twisted and tugged until finally the core was free. This core would give us a chronology of the reef over the last several hundred years, pre-dating modern monitoring efforts and major human impact in the region.

After over 20 hours of dive time as well as significant lifting, paperwork, and logistical maneuvering, we tallied up our spoils – around 650kg of sand. These samples were then shipped on pallets over 6700km to our lab in California, where they will be processed and carefully examined with a microscope to yield a tiny treasure trove of shark dermal denticles, fish teeth, otoliths, urchin spines, sponge spicules, foraminifera, and coral fragments – each piece a window into the past. Together, these remnants, contextualized by high precision coral dating, allow us to reconstruct how these coral reefs have changed over time alongside Moorea’s human history. I’ll be spending my days counting and classifying the shark dermal denticles (Dillon et al. 2017) to explore how shark communities shifted in size and composition over time on islands with different levels of human impact and settlement histories (Moorea as compared to Tetiaroa and Rangiroa). At the same time, some of my colleagues in the lab will be teasing apart patterns in the number and types of fish otoliths and teeth, particularly those belonging to important reef herbivores. Our coring work on Moorea is one piece of this larger puzzle, but it all begins with countless meters of pipe, ambition, and a lot of heavy lifting.

References

Dillon E, Norris R, O’Dea A (2017) Dermal denticles as a tool to reconstruct shark communities. Mar Ecol Prog Ser 566:117–134. http://dx.doi.org/10.3354/meps12018.

 

Huai-Hsuan May Huang

STRI Fellow

X371logo.jpgI am a micropaleontologist with a specialty in marine ostracods. I did my PhD in the University of Hong Kong. I love being on a research vessel, searching for answers in the vast ocean, and working with many scientists from diverse backgrounds. I am broadly interested in how species originated, distributed or went extinct in response to paleoenvironmental changes. Ostracods is a large class of bivalved crustaceans with a wide variety of ecological preferences, and is useful in paleoecological studies. In the STRI, I will be reconstructing the ostracod faunal changes during the emergence of the Panama Isthmus to shed light on the vulnerability of benthic meiofauna to environmental shifts.

www.researchgate.net/profile/Huai_Hsuan_Huang

Note: May will soon defend her Phd in the lab of Moriaki Yasuhara

 

Jon Cybulski

STRI Fellow and Ph.D. candidate University of Hong KongJon_diving_2.jpg

Presently, I am a Ecology and Biodiversity Ph.D. candidate in Dr. David Bakers Coral Biogeochemistry lab at the University of Hong Kong, Swire Institute of Marine Science. My dissertation research focuses on one simple overarching theme: What were coral assemblages like during Hong Kong’s past? To answer this, my work combines classical paleo and historical ecology techniques to collect marine sub-fossils, characterize their diversity changes, and then I use various biogeochemistry methods to extract isotopic information and see what stressors have been impacting them through time.

While in Panama in the O’Dea lab, I will be studying coral sub-fossils collected in push-cores from the Pacific side of Panama. Through species identification and taphonomic analysis, I hope to determine if a mid-Holocene high stand (a period in the past few thousand years with slightly higher mean sea levels) occurred in Panama. If a highstand did occur, I want to know what it can tell us about future sea level projections over the next 100 years due to anthropogenic climate change. In this way, we may be able to get a better understanding of what impacts sudden sea level changes have on coral communities, and what we can do to protect and give them a chance for survival.

Besides rocks and old dead things, I love weightlifting, playing sports, going on any type of outdoor excursion, brewing beer, or reading epic fantasy novels.

Panama was an ocean, will it be again? [Panamá fue una vez un océano, ¿lo será de nuevo?]

 

Published first in La Prensa 17 December 2018

O'Dea 2018 Panama era Mar 17 December La Prensa

Hace millones de años, donde se encuentra ubicada la angosta franja de tierra que hoy en día llamamos Panamá, había un océano profundo. Cuando se formó el istmo, se desencadenó una cascada de eventos globales. Mirando hacia el futuro, el istmo podría volver a jugar un papel importante en el cambio global.

Cuando esta historia empezó, los continentes de América del Sur y del Norte, África, Asia, Australia, y la Antártida, formaban un solo “supercontinente”, llamado Pangea.

Hace aproximadamente 150 millones de años, Pangea comenzó a fragmentarse, formándose el Océano Atlántico. A la vez, una pequeña vía marítima se abrió, conectando el joven y angosto Océano Atlántico con el enorme Océano Pacífico. Esta vía se encontraba justo donde está Panamá actualmente y fluyó entre el Pacífico y el Atlántico durante los siguientes 125 millones de años, permitiendo el libre movimiento de animales marinos.

Más recientemente, hace solo 25 millones de años, una franja de volcanes submarinos en el océano Pacífico chocó con América del Sur a la altura de Panamá. Los volcanes más altos emergieron como islas, transformando la vía marítima en varios estrechos de menos profundidad. Los fósiles de Panamá muestran que estas islas volcánicas estaban cubiertas de exuberante vegetación y rodeadas de arrecifes de coral llenos de peces.

Poco a poco, las rocas del fondo del mar comenzaron a subir hacia la superficie, convirtiéndose lentamente en un puente terrestre que volvió a conectar América del Sur y del Norte. Este evento monumental tomó más de 20 millones de años.

¿Cuándo fluyó la última gota de agua salada entre los dos océanos? Los científicos están de acuerdo en que el puente terrestre completamente formado surgió hace apenas 3 millones de años, casi ayer desde la perspectiva de un geólogo.

Impacto

¿Por qué el mar es azul en el Caribe, pero turbio y a veces frío en el Pacífico? ¿Por qué no hay playas de arena blanca a lo largo del Pacífico? ¿Por qué hoy día el Caribe es tan diferente del Pacífico? Estas diferencias enormes entre los océanos se deben a la presencia del istmo.

Los impactos de la formación del istmo también se sintieron mucho más allá de Panamá. Las corrientes oceánicas se desviaron, muchos animales se extinguieron, y hubo repercusiones en el clima y la biodiversidad del planeta entero.

DSC_3851_2

El puente creado por el istmo facilitó el movimiento de plantas y animales entre los dos continentes americanos. Las llamas y alpacas, icónicas de los Andes, son descendientes de camellos que migraron desde el norte hacia Sudamérica por medio del istmo.

Y la migración continúa hasta nuestros días: el coyote se dirige hacia el sur, mientras que el capibara se mueve hacia el norte.

El nuevo puente también formó una barrera: los animales marinos ya no podían moverse entre los océanos. Sus poblaciones se dividieron en dos. Científicos de todo el mundo usan este evento como el momento “cero” en un reloj para medir cuánto tiempo tardó para que evolucionen nuevas especies.

La historia de esta pequeña franja de tierra que cambió el mundo coloca nuestra propia existencia en el planeta en un contexto de humildad.

Pero, ¿hacia dónde vamos en el futuro? Los geólogos predicen que eventualmente el Istmo de Panamá va a separarse y flotar hacia el Caribe. Otro océano profundo pudiera conectar el Pacífico con el Atlántico nuevamente. Pero no se preocupen, esto no sucederá antes de unos 20 millones de años.

Sin embargo, hay algo de lo que sí deberíamos estar muy preocupados. El aumento de las emisiones de dióxido de carbono (CO2) a través de la quema de combustibles fósiles para el transporte y la producción de energía, la agricultura industrial y la pérdida de los bosques está alterando el curso de la historia de nuestro planeta.

Mientras que los océanos y la atmósfera se están calentando, los glaciares (algunos de los cuales tienen un espesor de más de 5 km) se están derritiendo, haciendo subir los niveles del mar debido al ingreso de agua dulce del deshielo. A medida que el mar se calienta, también se expande, elevando aún más su nivel.

Desde la revolución industrial, el nivel del mar ha aumentado alrededor de 26 cm y las predicciones sugieren otro metro por encima de eso en el próximo siglo. Curiosamente, no todas las partes del océano se están subiendo por igual. De hecho, el lado caribeño de Panamá está acelerándose más rápido que el promedio mundial. Los científicos todavía están tratando de entender por qué esto es así, pero es un hecho innegable.

Y es un hecho desalentador para lugares como la ciudad de Colón. Colón se construyó cerca del nivel del mar hace más de 150 años para satisfacer la demanda de la “fiebre del oro” en California. Las inundaciones recientes se deben principalmente a un sistema de drenaje envejecido y mal mantenido: el agua no puede salir lo suficientemente rápido al mar. Con un metro adicional de nivel del mar significa que no solo muchas partes de la ciudad estarán bajo agua marina, sino que los afortunados que se encuentren en terrenos ligeramente más altos también serán más difíciles de drenar.

Es una verdadera receta para el desastre, para la ciudad que una vez fue resplandeciente.

Cuando se construyó Colón, nadie podría haber predicho el aumento del nivel del mar. Ahora es diferente. Con una gran cantidad de datos científicos podemos predecir y podemos actuar.

Al oeste de Colón nos encontramos el archipiélago de Bocas del Toro. En 1991 Bocas fue golpeado por un tsunami que llevó agua marina a 200 m dentro de las calles del pueblo. Si volviera a ocurrir un tsunami similar, el hecho de que el nivel del mar sea más alto ahora de lo que era hace 27 años significa que sería más destructivo y catastrófico para la vida humana y las construcciones.

Al este, los gunas, que habitan el archipiélago de San Blas, ya están sintiendo los efectos del aumento del nivel del mar. Sus islas de belleza inigualable estarán entre las primeras en el mundo en extinguirse por el calentamiento global. Los países y Estados que han estimado los costos financieros de mitigar y responder al aumento del nivel del mar muestran que el precio será extremo, pero pocos están considerando los incalculables impactos culturales y sociales.

¡No piense que el lado pacífico del istmo será inmune a estos peligros! Solo pequeñas cantidades de aumento en el nivel del mar aumenta las posibilidades de inundaciones durante las mareas de tormenta. Tocumen, Costa del Este y otras tierras bajas serán muy propensas, más ahora que han perdido muchos manglares, que funcionaban como escudo protector.

Alternativas

Sin embargo, la ciencia nos informa de cambios que se pueden introducir para mitigar el calentamiento global. Panamá ya ha tenido un impacto increíblemente positivo en la reducción de las emisiones de CO2, ya que el canal evita que los barcos tengan que viajar por Sudamérica, lo que ha salvado la emisión de 700 millones de toneladas de dióxido de carbono a la atmósfera. No está mal para una pequeña franja de tierra y una zanja.

Pero no debemos ser complacientes. La Organización Marítima Internacional afirma que, sin intervención, las emisiones de carbono por actividades marítimas en el mundo podrían aumentar hasta 250% para 2050.

La industria del transporte marítimo cuenta con una gran cantidad de investigaciones para mejorar la eficiencia de los barcos, especialmente cuando un aumento en la eficiencia de combustión de solo un pequeño porcentaje puede resultar en ahorros financieros significativos que alcanzan los millones de dólares.

Los avances tecnológicos son una parte importante de la solución, especialmente en el diseño del casco, las nuevas fuentes de combustible y las mejoras del motor, pero igualmente importante es la introducción de mejores medidas operativas, como la adopción de “vapor lento” y la mejora de la logística a bordo y en los puertos, que puede tener impactos sorprendentemente grandes en la eficiencia y, por lo tanto, desempeñar un papel importante en la reducción de emisiones a nivel mundial.

Nuestras elecciones de estilo de vida también son importantes. Por ejemplo, la compra de productos cultivados localmente no solo ayuda a los agricultores locales, sino que también evita la necesidad de transportar productos refrigerados en barcos a alta velocidad; una de las formas de transporte más contaminantes.

América Latina y el Caribe dependen en gran medida del transporte marítimo, y es donde se realiza más del 90% de todos los movimientos internacionales de carga, una gran proporción de los cuales utiliza el Canal de Panamá.

Tenemos la responsabilidad de aprender del pasado para mejorar nuestro futuro. Hace millones de años, el pequeño istmo de Panamá jugó un papel increíble en la conducción de los cambios en el mundo. Aunque Panamá es pequeño, tiene la bendición de estar en una posición privilegiada para seguir ayudando a bajar las emisiones contaminantes y, una vez más, desempeñar un papel importante en un cambio positivo para nuestro planeta y para las poblaciones costeras, que serán las más afectadas por el aumento del nivel del mar.

Publicado por La Prensa: https://impresa.prensa.com/vivir/Panama-vez-oceano-nuevo_0_5192480746.html

Ian Cooke-Tapia

Reportage Illustrator, Writer

Ian is a multicultural and multidisciplinary illustrator, visual journalist, and writer of weird fiction.  He has a wide breadth of interests, from cultural intersectionality to science communication, and Pre-Columbian art.

Ian takes particular interest in the effect environments have on individuals and culture both as a source of illustrative material and as inspiration for short stories. His work often appears as illustrations and sketches of a place and the people therein. In creating engaging visual records of mundanity often ignored, Ian aims to show that the lenses of normality often hides a true multiplicity and complexity to our every individual, collective and cultural action.

Ian joins the O’Dea Lab not just to document the day-to-day of scientific research, but find the multilayered relationships between researchers, their investigations, and the stories waiting to be told by the people in these tropical “paradises” we rarely ever hear from. By displaying these findings as information-rich illustrations, Ian aims to bring tropical sciences, folk knowledge and novel communication methods to a wider audience, both in his native Panama and around the world.

Old dogs and new tricks

By Beth King, STRI

Discoporella close up
Close-up of the millimetre sized individual zooids of a colony of Discoporella

A quick look at the fossil record shows that no species lasts forever. On average, most species exist for around a million years, although some persist for much longer. A new study published in Scientific Reports from paleontologists at the Smithsonian Tropical Research Institute in Panama shows that young species can take advantage of new opportunities more easily than older species: a hint that perhaps older species are bound to an established way of life.

“We’re lucky to live and work in Panama where nature has set up its own evolutionary experiment,” said Aaron O’Dea, STRI paleontologist. “When the Caribbean Sea was isolated from the Pacific Ocean by the slow uplift of the Isthmus of Panama, nutrient levels fell and Caribbean coral reefs proliferated. We can use the excellent fossil record to observe how Caribbean life responded to this environmental and ecological transformation.”

The team’s best choice for tracking the change was a peculiar family of marine animals known as the cupuladriid bryozoans. These relatively small animals consist of unusual, free-living, disc-shaped colonies of individuals called zooids. “Colonies form through sexual reproduction or asexually by cloning, as bits of the colony break off and continue to grow,” said STRI post-doc and coauthor Blanca Figuerola. “They abound on the sea floor along the continental shelf across the tropics, filtering plankton from the water via a beautiful waving crown of tentacles. When colonies die, their hard skeletons remain, and are exceptionally abundant as fossils.”

O’Dea’s group collected and identified more than 90,000 cupuladriid colonies from 200 fossil samples and 90 more recent samples collected by dredging the sea floor. The samples contained mud, sand, coral remains and other indicators of the kind of habitats where the bryozoans had lived. The team measured the abundances of the 10 most common species along gradients of these environmental and ecological indicators.

“We were intrigued to find that, even though all species could expand into the new Caribbean habitats created after final formation of the Isthmus, different species did so at different speeds,” said O’Dea. “The patterns were clear—old species that originated before 8 million years ago took 2 million years longer to expand into the new habitats than the younger species.”

“Perhaps younger species, which have smaller populations, are less tied to their history,” said former STRI post-doc and University of Saskatchewan researcher Santosh Jagadeeshan, another co-author. “Old species, with large, settled populations may be less able to escape from established roles and defined environmental tolerances because they mate with each other creating a high gene flow that makes it hard for genes for new traits to become established. It seems you can’t teach an old dog new tricks in evolution, either.”

The study was funded by Panama’s National Bureau of Science, Technology and Innovation, SENACYT, Panama’s National System of Researchers (SNI), the U.S. National Science Foundation (NSF), the Smithsonian Institution, STRI, the National Geographic Society and Mr. Josh Bilyk.

O’Dea, A., De Gracia, B., Figuerola, B. and Jagadeeshan, S. 2018. Young species of bryozoans occupied new Caribbean habitats faster than old species. Scientific Reports, DOI: 10.1038/s41598-018-30670-9

colony-coloured-inset-emerging-colony
Stiff setae extend away from the edge of cupuladriid bryozoan colonies, and work in synchrony to allow the colony to “walk” over the sea floor and emerge from the sediment when buried

¿A dónde se fueron las playas blancas?

isla grande donde se fue la playaLas imágenes satélite de 2009 (arriba) y 2016 (abajo) muestran la pérdida completa de la hermosa y valiosa lengua de arena blanca en Isla Grande.

Llegué a Panamá por primera vez en 1998. En esta época era un joven estudiante y me atraía y fascinaba la vida marina en ambos lados del istmo. Era mi primera vez en las Américas y toda era una aventura. Sobreviví a tres cosas: a una disentería en Bocas del Toro, al atropello por un taxista en la ciudad de Panamá y a la caída de un coco sobre mi cabeza en Isla Grande, Provincia de Colón. Salí del país prometiendo nunca volver. Pero, como dije al principio, Panamá goza de una extraordinaria vida marina que cautiva al primer contacto con ella. No hace falta decir que ahora hace ya 16 años que vivo en Panamá con mi familia panameña.

En esa primera visita a Isla Grande, en la zona llamada Costa Arriba, me encontré con una exquisita extensión o lengua de arena blanca que iba desde la esquina suroeste de la isla a más de 150 metros hacia mar adentro. En esta época, buceé con una dinastía de peces brillantes; en la noche dormí sobre las blancas y suaves arenas de la playa, que imaginaba como una gran cama de harina. Hoy día, la playa se ha ido y no hay peces. ¿Qué ocurrió?

La erosión de la playa es un proceso natural que ha ocurrido durante miles de años, en donde la arena es arrastrada por la acción de la lluvia o las olas, y es reemplazada por arena nueva, algunas veces más, algunas veces menos, por lo que la playa cambia de forma. Entonces, ¿por qué las arenas no regresaron a Isla Grande?

La respuesta es bastante interesante y algo desconcertante. Resulta que la suave harina blanca que nos encanta en nuestros pies en realidad está hecha de pequeños pedazos de coral que fueron comidos y luego defecados por animales como los peces loro. Sí! Las playas blancas del Caribe están hechas de excremento de peces. Algunos científicos han estimado que un solo pez loro puede producir una increíble tonelada de arena en un año. ¿Cómo lo midieron?, no les pregunté!

Por consiguiente, cuando se eliminan los peces loro del arrecife por la sobrepesca, llega un momento en que la arena erosionada es mayor que la arena que se forma, y la playa desaparece rápidamente. No más peces, no más playa. Agregue a eso el impacto de la contaminación y el calentamiento global sobre los corales, y tendremos una receta perfecta para el desastre.

El resultado no solo se muestra en imágenes de satélite, sino también en los recuerdos de quienes alguna vez disfrutaron de estas playas espectaculares. Las personas en las comunidades costeras desde Bocas del Toro hasta los Cayos de Guna Yala, están viendo desaparecer sus playas de arena blanca.

¿Cómo lo detenemos? En papel es sencillo: mejorar la salud de los corales y aumentar el número de peces loro; y las playas volverán. En la práctica, podemos buscar historias de éxito en otros lugares del caribe. En Punta Cana, República Dominicana, conocen el valor económico de sus playas de arenas blancas. Estimaron que con cada metro de playa perdida, el país pierde más de 300,000 dólares en ingresos del turismo cada año (Wielgus et al. 2010). En Punta Cana establecieron zonas dónde estaba prohibido pescar que permitieron la recuperación del pez loro y en consecuencia de los arrecifes. También, emprendieron una fuerte campaña para cultivar nuevos corales donde anteriormente existían. Es un modelo que tiene sentido desde el punto de vista comercial y podría aplicarse en cualquier parte del mundo si cuenta con una iniciativa correcta y regulada. Las playas de Panamá son un tesoro nacional que vale muchos millones de dólares en turismo. Son una protección frente al aumento del nivel del mar y a las tormentas como el infrecuente, pero mortal, huracán Otto. Brindan refugio a la vida marina y alimentan a las comunidades locales. Pero más que esto, se suman inexorablemente a la calidad de vida a todos.

Al saber cómo se forman estas playas podemos entender mejor porque se están perdiendo. Eso nos ayuda a tomar decisiones más efectivas que traerán de vuelta las hermosas playas del Caribe, para así apoyar la economía futura de las comunidades locales y el disfrute de todos.

Michele Pierotti

Smithsonian Research Fellow

TOP_in place of ass-and-feet image.jpgMy research integrates behavioural ecology, sensory physiology, evolutionary ecology and genomics to examine the role of environmental change in shaping communication systems and ultimately the evolutionary trajectory of populations. I am fascinated by rapid ecological adaptation and its genetic and epigenetic underpinnings, particularly in aquatic environments. If there is water, and there are animals, I am interested!

My work at STRI focuses on divergence in ecological traits between sister species of coral reef fishes separated by the rise of the Isthmus of Panama. At the moment, I am examining how the visual system of sister fish species differentially adapted to the drastically different underwater light conditions between the two coasts (Pacific and Caribbean) of Panama.BOTTOM below all text work description

ResearchGate
Google Scholar

Jorge Morales

Lab ManagerDSCN2031.JPG

I am an environmental biologist from Panama, interested in understanding how coastal marine ecosystems respond to human-induced perturbations, and how to apply this knowledge to conservation and management strategies.

Katie Griswold

STRI Fellow

14103072_10210865839581143_5514213328906920352_o.jpg

I am working on a project with Dr. Chien-Hsiang Lin that uses otolith assemblages to investigate the life histories of holocene reef fish. I am searching for patterns in the sizes of these assemblages over time, space and habitat. Through the study of otolith assemblages, we hope to contribute information to what coral reef fish communities were like in a time before human influence. This information can be compared to present reefs and can shape our ideas about ecosystem conservation.

I graduated from Boston University with a B.A. in marine science and biology, then spent a year as an Americorps after-school educator before I joined STRI as a research assistant. My personal interests lie at the intersection of research and community-driven conservation. I hope to explore marine ecological questions while supporting connections to the natural world through citizen science outreach.

Ramiro J Solís

SENACYT & STRI intern

22089361_10203755535325107_7780598286786180057_nI am a student of Marine Biology at the International Maritime University of Panama. I have previously worked on the ​​taxonomy,  identification and ecology of coral reef fish. I am currently working on a project that seeks to create the first collection of micro-gastropods in Panama, and at the same time investigate the variability in time and space of these organisms on a geological scale at the Caribbean and Pacific side of Panama to understand environmental changes. My primary goal as a marine biologist is to help develop science in Panama to help preserve the natural world.

Get your optimism from the past

When we think about a “pristine” untouched ecosystem we often have a single, preconceived image in mind. It could be a grassland with thousands of bison, a thick tropical forest, or a coral reef teeming with fish and sharks. These places certainly existed, and in many cases are now lost or replaced by alternatives, but there has always been variation and not everywhere would fit into these limited boxes. There must always have been marginal ecosystems and vast amounts of variation.

It is this variation that we propose can help conservation. If we can describe that variation we can do a better job at placing modern ecosystems into context. In this paper published in Conservation Biology we discuss our ideas of how the fossil record can be used to redefine what should be considered “pristine” and the positive benefits of doing so for conservation.

Open Access available

O’Dea, A., M. Dillon, E., H. Altieri, A. and L. Lepore, M. (2017), Look to the past for an optimistic future. Conservation Biology. doi:10.1111/cobi.12997

AZA_4043.JPG

Alexis Sullivan

STRI Short Term Fellow and doctoral student at PSU

2015-07-16 15.19.59 crop

Alexis’ Personal webpage

I am a Biology Ph.D. graduate student in George (PJ) Perry’s Anthropological Genomics Lab at Penn State University. My dissertation research is focused on integrating morphological and evolutionary genomics techniques to characterize how human behavior impacts non-human evolutionary biology.

I am working with Aaron at STRI to collect modern, archaeological, and paleontological shell materials from Bocas del Toro. Strombus pugilis is a species of conch that has decreased in body size at maturity over the past ~7000 years possibly due to size-selective human subsistence pressures. I’ll export these shell samples, along with some modern tissue samples, back to PSU and attempt to extract and sequence both modern and ancient DNA from these materials.

One long-term goal is to perform a genome-wide association study (GWAS) to identify genetic loci associated with body size variation in these marine snails. These loci could then be studied with evolutionary population genomic methods to test the hypothesis that small body size has evolved via a history of positive natural selection. If ancient DNA can be extracted and sequenced from the archaeo- and paleontological sites, it will be possible to directly track the evolutionary history of size-associated genetic variants over time, relative to genetic variants from other regions of the genome.

Blanca Figuerola

SENACYT & STRI Post-doctoral Fellow

My research sits between the established disciplines of biodiversity, ecology, chemical ecology and mineralogy in the context of the global change using bryozoans as model organisms.

blancafiguerola

My current research aims are (a) to present new data on bryozoan species richness and the spatial patterns from poorly known regions, (b) to evaluate the ecological and applied effects of their natural compounds and (c) to deepen current understanding of skeletal geochemistry so that we can assess better how they will respond to global change.

Why study bryozoans?

Bryozoans are ubiquitous and important members of many benthic communities with high productivity, biodiversity and many ecosystem services and their global species richness is still largely underestimated. Biodiversity and biogeographical baseline studies are starting points for monitoring and rapidly assessing changes associated with threats such as climate change and the establishment of invasive marine species.

They inhabit depths between the intertidal to abyssal plains, and at all latitudes in the oceans. The broad bathymetrical and geographic ranges of some species make them useful organisms for evaluating depth and/or geographical-related changes.

They are known to produce natural products (NPs), such as alkaloids and terpenoids, although research in NPs and their role in an ecological context have focused mostly on other phyla.

They are often dominant skeletal-carbonate producers in temperate and polar waters that secrete skeletal calcite containing significant amounts of Mg-calcite. Their skeletons are more soluble than skeletons with low Mg content, and consequently, more susceptible to ocean acidification, as the solubility of calcite increases with its Mg-calcite content.

Building Bridges

As the debate on the age of the Isthmus of Panama matures we respond to an eLetter.

Taken from Science Advances

8 November 2016

We thank Erkens and Hoorn for their constructive comments. Like us, they believe that collaboration between biologists, geologists and paleontologists focusing on data and analyses is required to unravel the history of the Isthmus of Panama. We agree with Erkens and Hoorn that the Continue reading

Historical records reveal that Caribbean coral reefs grow faster with more parrotfishes

screen-shot-2017-02-08-at-23-23-27Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef Continue reading

Irene Kopelman

In 2016, artist Irene Kopelman brought her unique and endearing perspective of nature to our science.

Irene built her “Underwater Workstation” where she used fossils from our lab and living organisms with Andrew Altieri’s lab (including two live mangrove root systems covered in sponges, ascidians and other creatures) to reflect on (amongst other things) the surprising similarities between the processes of science and art. Read more about Irene’s underwaterworkstationScreen Shot 2016-12-05 at 19.08.46.png

 

irene_underwater_workstation_flyer_cropped

Nicte-Ha Muñoz

STRI Intern

nicte

Nicte-Ha did her master’s  degree in marine biology at Reefs System Unit, UNAM, Mexico. There, she investigated the growth rates of fossil and modern corals as proxies to understand environmental change.

As an intern scientist of the O’Dea lab, Nicte-Ha expects to  gain a wider perspective on how the study of past marine environments can help to develop better strategies for conservation of current coral reef ecosystems that are under the current effects of human impacts.

Nicte has now moved on to the Altieri lab

Chien-Hsiang Lin

STRI Post-doctoral Fellow

c-h-lin

I am a taxonomist and primarily use fish otoliths to explore systematic and ecological questions. Much of my work uses sea bottom otolith assemblages as a study system, but I also work on fossil materials to address their paleoecological, biogeographical and evolutionary aspects.

 

 

Melisa Chan

Intern (STRI and College of the Atlantic)

11057221_1200174916675890_4708391133992757548_nI am an undergraduate student at College of the Atlantic in Bar Harbor, Maine, pursuing a degree in Human Ecology with a concentration in marine biology. I am interested in the ecological relationship between sea turtles and the communities in which they belong. Subsequently, I hope to make further contributions to the restoration and conservation of both in my homeland, Malaysia.

At STRI I am assisting Mauro Lepore in quantifying the differences in community composition between fossil reefs and sub-recent reefs in Bocas del Toro. This internship will provide me with a new perspective to approach marine conservation: how the study of marine historical ecology can be utilized to better inform coral reef restoration and conservation efforts.

Felix Rodriguez

DSC_3624
Soy biólogo y paleontologo marino y los moluscos son mi gran pasión. Utilizo la taxonomía como una herramienta para identificar cientos de estos animales, tanto del registro fósil como modernos. Me interesan las interacciones ecológicas, depredador-presa en función del hábitat y los efectos antopocénicos sobre el medio ambiente, desde el punto de vista de conservación.El enfoque que utiliza el proyecto es súper interesante, ya podemos ir al pasado usando la paleontología; saber cómo eran los ambientes, que especies dominaban y que ha cambiado.

 

Brigida de Gracia

Research technician

Soy licenciada en geografía e historia de la Universidad de Panamá. Como técnica de investigación he tenido la oportunidad de trabajar en diferentes proyectos identificando organismos de la fauna arrecifal como: Bryozoas, corales, bivalvos y gasterópodos. Actualmente, en colaboración con el Dr. Orangel Aguilera (Universidad Federal Fluminense, Brasil), trabajo en un proyecto que busca describir las comunidades de peces arrecifales antes de las perturbaciones (p.ej. milenios de sobrepesca) causada por los seres humanos. Para ello identifico otolitos, estructuras calcáreas alojadas en el oído interno, de peces teleósteos marinos colectados en muestras fósiles (Holoceno, ~7000 años) y modernas del Caribe. Los datos que se obtendrán serán muy importantes en la gestión de los recursos pesqueros en el Caribe de Panamá principalmente, así como para funcionarios tomadores de decisiones y conservacionistas.

Catalogo de otolitos de Bocas del Toro

Graciela Quijano

STRI Intern

foto mia

Soy Bióloga egresada de la Universidad de Panamá con orientación a la biología animal. Estoy realizando una pasantía que va enfocada específicamente a la clasificación de los moluscos utilizando muestras de la costa del Pacífico así como del Caribe. En este proyecto manipulare organismos del registro fósil como modernos, separando las especies según caracteres morfológicos que me ayudaran a inferir entre familias y géneros. Teniendo en cuenta que los moluscos son un grupo muy diverso y complejo y el cual ha sufrido un proceso evolutivo muy interesante a lo largo de todo este tiempo.

Henbelk Hernandez

STRI Intern

20140308_093822(0) 1

My interests lie in geology and paleoecology, specifically the structure, constitution, behaviour, and evolution of physical processes and how they interact with biology. I am working with Erin Dillon to process fossil and modern reef sediments from the Dominican Republic for her shark dermal denticle project. Through this opportunity, I hope to gain experience in the lab and learn more about microfossils and their application in interpreting environmental change over time, which will assist my future academic studies in paleoecology.

 

Abhy Verdurmen

Intern (SENACYT, STRI, University of Panama)

DSCF4024I’m a Biology undergraduate student at University of Panama profoundly interested in Marine Biology and paleontology, especially the evolution, adaptation and ecology of coral reefs. I’m working on a project that consists of reconstructing the Caribbean reef fish communities of the past, and my master tools for this research are fish otoliths. Otoliths have distinct shapes that enable us to identify fish families, sometimes even to the level of species and fossil otoliths may help us reconstruct the reef fish community of the Caribbean 7000 years ago (i.e. before human impacts). This information will provide a baseline that will enable us to compare “pristine” with modern reef fish communities.

Jorge Salgado

Post-doc (Now Assistant Professor at Universidad de Los Andes)

IMG_1922

My research focuses in the understanding of multiple factors influencing freshwater biodiversity over time. I am interesting in the synergies between the introduction of exotic species, water pollution, hydrological alterations and climate change affecting lake assemblages in the Anthropocene. My work integrates paleolimnological techniques, historical data and contemporary monitoring data in human-impacted tropical lakes to:

  1. Assess how tropical lake communities respond over time (decadal to centennial) to environmental change (e.g. eutrophication, climate change and lake water level alterations).
  2. Determine if dominance of exotic aquatic plants and fish are a direct consequence of competitive exclusion with native species; or whether dominance is an indirect cause from direct negative effects of habitat disturbances on native communities.
  3. Explore if there have been positive impacts from the introduction of exotic species (e.g. carbon sequestration.

Abigail Kelly

STRI Pre-doc fellowDSCN1150 (1)

Abby is working on a project that explores how marine life, specifically molluscs, respond to the differing energy regimes of the Pacific and Caribbean sides of the Isthmus of Panama. The Pacific experiences coastal upwelling and high nutrient availability, corresponding to high productivity, while the Caribbean experiences no upwelling and low productivity. How do marine communities, which share many of the same species, differ between the Caribbean and Pacific sides?

 

Yamilla Samara

STRI Intern

PhotoI am a student at Keiser University in Nicaragua who will be transferring to FIU this year to pursue a degree in Marine Biology. I am working alongside Erin Dillon helping process fossil and modern sediment samples to find shark denticles and formulate a hypothesis of how shark communities were before humans. This will allow me to explore new areas of marine biology and gain experience doing research. It will also help me understand how fossils can be used to interpret the present.