Blanca Figuerola

SENACYT & STRI Post-doctoral Fellow

My research sits between the established disciplines of biodiversity, ecology, chemical ecology and mineralogy in the context of the global change using bryozoans as model organisms.


My current research aims are (a) to present new data on bryozoan species richness and the spatial patterns from poorly known regions, (b) to evaluate the ecological and applied effects of their natural compounds and (c) to deepen current understanding of skeletal geochemistry so that we can assess better how they will respond to global change.

Why study bryozoans?

Bryozoans are ubiquitous and important members of many benthic communities with high productivity, biodiversity and many ecosystem services and their global species richness is still largely underestimated. Biodiversity and biogeographical baseline studies are starting points for monitoring and rapidly assessing changes associated with threats such as climate change and the establishment of invasive marine species.

They inhabit depths between the intertidal to abyssal plains, and at all latitudes in the oceans. The broad bathymetrical and geographic ranges of some species make them useful organisms for evaluating depth and/or geographical-related changes.

They are known to produce natural products (NPs), such as alkaloids and terpenoids, although research in NPs and their role in an ecological context have focused mostly on other phyla.

They are often dominant skeletal-carbonate producers in temperate and polar waters that secrete skeletal calcite containing significant amounts of Mg-calcite. Their skeletons are more soluble than skeletons with low Mg content, and consequently, more susceptible to ocean acidification, as the solubility of calcite increases with its Mg-calcite content.

Jorge Salgado

Post-doc (Universidad de Los Andes)


My research focuses in the understanding of multiple factors influencing freshwater biodiversity over time. I am interesting in the synergies between the introduction of exotic species, water pollution, hydrological alterations and climate change affecting lake assemblages in the Anthropocene. My work integrates paleolimnological techniques, historical data and contemporary monitoring data in human-impacted tropical lakes to:

  1. Assess how tropical lake communities respond over time (decadal to centennial) to environmental change (e.g. eutrophication, climate change and lake water level alterations).
  2. Determine if dominance of exotic aquatic plants and fish are a direct consequence of competitive exclusion with native species; or whether dominance is an indirect cause from direct negative effects of habitat disturbances on native communities.
  3. Explore if there have been positive impacts from the introduction of exotic species (e.g. carbon sequestration.

Mauro Lepore

Quantifying Ecological Changes in Reef-Building Corals over Historical Timescales

Coral reefs are declining worldwide but we do not know what a natural reef should look like because their degradation appears to have begun long beforeLeporeML_portrait_2 scientists began to survey reefs. Focusing on Bocas del Toro, Panama, this project aims to quantify the differences in the ecological structure of reef-building corals from a 7000 year old fossil reef versus a modern reefs. The fossil reef and modern reefs respectively developed before and during the period when human activity has been the dominant influence on climate and the environment. Understanding how reef-building corals have changed over historical timescales can help marine managers to assess the decline of Caribbean reefs relative to their condition before the period during which human activity has been the dominant influence on climate and the environment.


Paola Rachello Dolmen

STRI and Texas A&M Postdoctoral fellow

My research interest are: (1) Relating community structure over broad spatial, environmental and temporal scales; (2) Historical interactions between natural variability, biota and humans; (3) Reconstruct past environmental conditions using stable isotope ratios of modern and fossil mollusc specimens; (4) Design, construct, test and maintain useable databases and web-systems and (5) Marine macro- and micro- gastropod biodiversity and taxonomy.

The diverse temporal time-scales (modern to geological), spatial habitat differences in temperate, tropical and subtropical areas and the complexity of the organisms I have studied in the past (macro and micro gastropods, corals, sponges, crustaceans), provides an excellent bPaola_1ackground to conduct innovative research and integrate macroecology and palaeoecology. Thus, my current research focuses on integrating new and existing geochemical data with paleobiological data from the Panama Paleontology Project (PPP) to resolve the drivers of ecological change and evolutionary turnover in the Caribbean. In collaboration with Dr. Ethan Grossman (Texas A&M) I have built a relational database ‘Tropical Ocean Database’ that will be available  to unite paleoecology, evolutionay, environmental and geochemical datasets to allow broad-scale comparison and analysis of marine ecosystems and their communities through time.