Get your optimism from the past

When we think about a “pristine” untouched ecosystem we often have a single, preconceived image in mind. It could be a grassland with thousands of bison, a thick tropical forest, or a coral reef teeming with fish and sharks. These places certainly existed, and in many cases are now lost or replaced by alternatives, but there has always been variation and not everywhere would fit into these limited boxes. There must always have been marginal ecosystems and vast amounts of variation.

It is this variation that we propose can help conservation. If we can describe that variation we can do a better job at placing modern ecosystems into context. In this paper published in Conservation Biology we discuss our ideas of how the fossil record can be used to redefine what should be considered “pristine” and the positive benefits of doing so for conservation.

Open Access available

O’Dea, A., M. Dillon, E., H. Altieri, A. and L. Lepore, M. (2017), Look to the past for an optimistic future. Conservation Biology. doi:10.1111/cobi.12997

AZA_4043.JPG

Historical records reveal that Caribbean coral reefs grow faster with more parrotfishes

screen-shot-2017-02-08-at-23-23-27Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef Continue reading

New opportunities in the O’Dea lab

We are looking for three new interns/fellows to join the O’Dea lab. For more information download the flyers here: opportunities in the O’Dea lab

Project 1 (one position). Interoceanic differences in energy flow. Position open now, send CV and cover letter to odeaa@si.edu.

Project 2 (two positions). The ecological, life history and environmental differences between Holocene and modern Caribbean coral reef fish assemblages using fossil otoliths. To apply follow directions on the flyer.

Natural History of the Isthmus of Panama

Felix Rodriguez and I just published a compendium of papers in Spanish for students and non-scientists in Latin America. The book is called “Historia natural del Istmo de Panama” and features a suite of papers covering different topics from the geology of the Isthmus to the future of fishing along both coasts of Panama. The book will be on sale across the Isthmus. Let me know if you wish to purchase a copy.

My contribution can be downloaded here: Historia natural de los mares panameñosbook-HistoriaNat-mod

Can spicules be used to reconstruct ancient sponge communities?

Anyone that has played with coral reef sand has felt the sharp needles of sponge spicules  in their hands. Spicules are made by sponges (and other animals too, like some ascidians) and are like glass. In fact they are glass, being made of pure silica, and they are used by sponges as defense from chomping fish or to help keep the sponge rigid. They come in an amazing variety of shapes and sizes, and the sands of coral reefs can be filled with billions of spicules.

Sponges are very important for reefs. They filter huge quantities of water keeping things clear and clean, provide important homes for loads of other animals, and they protect reefs from erosion by binding the reef together. But, as with most of life in the Caribbean, sponge communities have started to deteriorate. Since the 1980’s they have become less abundant and less diverse. Without sponges reefs may just wash away.

We wish to explore the historical changes in Caribbean reef sponge communities. When did sponges decline and why? The coring project of the TMHE will be exploring sponge spicules through the last few thousand years in several Caribbean reefs (see here). However, spicules are strange beasts. Some sponges produce millions of spicules, others hardly any or none at all. Spicule shape is highly variable (see image) but is not tightly phylogenetically constrained. That means that some spicule types occur in unrelated groups. What’s more, some sponges have more than one type of spicule, sometimes three or four.

This all makes it extremely difficult to reconstruct the sponge community from a bunch of spicules. In this paper student Magdalena Lukowiak at the Polish Academy of Sciences who had held a short term fellowship at STRI explores the taphonomy of sponge spicules on a Caribbean reef in Bocas del Toro. The relationships between sponge community and spicules found on the sea floor explored in this paper will help us to resolve changes in sponge communities through our cores.

Download the paper by clicking on the image

Continue reading

Extinctions in ancient and modern seas

In the coming century, life in the ocean will be confronted with a suite of environmental conditions that have no analog in human history. Will marine species adapt or go extinct?

The last two years I have been involved in a dynamic working group called “Determinants of extinction in ancient and modern seas” led by Paul Harnik, Rowan Lockwood and Seth Finnegan and funded by NESCent. The aim of the working group is to use the history of life as preserved in the fossil record to help make better predictions about where life is heading in the future, especially in view of the looming sixth mass extinction.

We have just published our first paper in Trends in Ecology and Evolution. The study compares the patterns, drivers, and biological correlates of marine extinctions in the fossil, historical, and modern records and evaluates how this information can be used to better predict the impact of current and projected future environmental changes on extinction risk in the sea.

Download the pdf of the paper by clicking on the image.

harnik1